Privacy-Preserving Data Stream Classification
نویسندگان
چکیده
In a wide range of applications, multiple data streams need to be examined together in order to discover trends or patterns existing across several data streams. One common practice is to redirect all data streams into a central place for joint analysis. This “centralized” practice is challenged by the fact that data streams often are private in that they come from different owners. In this paper, we focus on the problem of building a classifier in this context and assume that classification evolves as the current window of streams slides forward. This problem faces two major challenges. First, the many-to-many join relationship of streams will blow up the already fast arrival rate of data streams. Second, the privacy requirement implies that data exchange among owners should be minimal. These considerations rule out all classification methods that require producing the join in the current window. We show that Naive Bayesian Classification (NBC) presents a unique opportunity to address this problem. Our main contribution is to adopt NBC to solve the classification problem for private data streams.
منابع مشابه
Privacy Preserving Data Stream Classification Using Data Perturbation Techniques
Data stream can be conceived as a continuous and changing sequence of data that continuously arrive at a system to store or process. Examples of data streams include computer network traffic, phone conversations, web searches and sensor data etc. These data sets need to be analyzed for identifying trends and patterns, which help us in isolating anomalies and predicting future behavior. However,...
متن کاملPrivacy Preserving Stream Analytics: The Marriage of Randomized Response and Approximate Computing
How to preserve users’ privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy guarantees for users, a privacy bound tighter than the st...
متن کاملPrincipal Component Analysis Based Transformation for Privacy Preserving in Data Stream Mining
Data stream can be conceived as a continuous and changing sequence of data that continuously arrive at a system to store or process. Examples of data streams include computer network traffic, phone conversations, web searches and sensor data etc. The data owners or publishers may not be willing to exactly reveal the true values of their data due to various reasons, most notably privacy consider...
متن کاملExplorer PrivApprox : Privacy - Preserving Stream Analytics
How to preserve users’ privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three important properties: (i) Privacy: zero-knowledge privacy guarantee for users, a privacy bound tighter th...
متن کاملA centralized privacy-preserving framework for online social networks
There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008